Tectal neurons signal impending collision of looming objects in the pigeon.

نویسندگان

  • Le-Qing Wu
  • Yu-Qiong Niu
  • Jin Yang
  • Shu-Rong Wang
چکیده

Although the optic tectum in non-mammals and its mammalian homolog, the superior colliculus, are involved in avoidance behaviors, whether and how tectal neurons respond to an object approaching on a collision course towards the animal remain unclear. Here we show by single unit recording that there exist three classes of looming-sensitive neurons in the pigeon tectal layer 13, which sends looming information to the nucleus rotundus or to the tectopontine system. The response onset time of tau cells is approximately constant whereas that for rho and eta cells depends on the square root of the diameter/velocity ratio of objects looming towards the animal, the cardioacceleration of which is also linearly related to the square root of this ratio. The receptive field of tectal cells is composed of an excitatory center and an inhibitory periphery, and this periphery does not inhibit responses to looming stimuli. These results suggest that three classes of tectal neurons are specified for detecting an object approaching on a collision course towards the animal, and that rho and eta cells may signal early warning of impending collision whereas tau cells initiate avoidance responses at a constant time before collision through the tectopontine system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Looming-sensitive responses and receptive field organization of telencephalic neurons in the pigeon.

The tectofugal pathway in birds goes from the optic tectum to the telencephalic entopallium via the thalamic nucleus rotundus (nRt). This pathway may be homologous to the colliculo-pulvinar-cortical pathway in mammals. It is known that a population of rotundal neurons in the pigeon can signal impending collision of looming objects with the animal. Here we show by single-unit recording that ther...

متن کامل

Neuronal responses to looming objects in the superior colliculus of the cat.

The superior colliculus (SC) in the mammalian mesencephalon is involved in avoidance or escape behaviors, but little is known about the response properties of collicular neurons to an object approaching on a collision course towards the animal. The present study identified two classes of looming-sensitive neurons, rho and eta cells, in the SC of the cat, but did not find any tau cell, which has...

متن کامل

A Visual Pathway for Looming-Evoked Escape in Larval Zebrafish

Avoiding the strike of an approaching predator requires rapid visual detection of a looming object, followed by a directed escape maneuver. While looming-sensitive neurons have been discovered in various animal species, the relative importance of stimulus features that are extracted by the visual system is still unclear. Furthermore, the neural mechanisms that compute object approach are largel...

متن کامل

Habituated visual neurons in locusts remain sensitive to novel looming objects.

Many animals must contend with visual cues that provide information about the spatiotemporal dynamics of multiple objects in their environment. Much research has been devoted to understanding how an identified pair of interneurons in the locust, the Descending Contralateral Movement Detectors (DCMDs), respond to objects on an impending collision course. However, little is known about how these ...

متن کامل

Responses of Tectal Neurons to Contrasting Stimuli: An Electrophysiological Study in the Barn Owl

The saliency of visual objects is based on the center to background contrast. Particularly objects differing in one feature from the background may be perceived as more salient. It is not clear to what extent this so called "pop-out" effect observed in humans and primates governs saliency perception in non-primates as well. In this study we searched for neural-correlates of pop-out perception i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 22 9  شماره 

صفحات  -

تاریخ انتشار 2005